Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 71: 178-187, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34861534

RESUMO

When bilaterian animals first emerged, an enhanced perception of the Precambrian environment was key to their stunning success. This occurred through the acquisition of an anterior brain, as found in most extant bilaterians. What were the core circuits of the first brain, and how do they relate to today's diversity? With two landmark resources - the full connectome and a multimodal cellular atlas combining gene expression and ultrastructure - the young worm of the marine annelid Platynereis dumerilii takes center stage in comparative bilaterian neuroanatomy. The new data suggest a composite structure of the ancestral bilaterian brain, with the anterior end of a circular CNS fused to a sensory-neurosecretory apical system, and with lhx6-arx-dlx chemosensory circuits giving rise to associative centers in the descending bilaterian lineages.


Assuntos
Anelídeos , Netuno , Animais , Anelídeos/genética , Encéfalo , Sistema Nervoso , Neurônios/metabolismo
2.
Dev Biol ; 438(2): 94-110, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29596841

RESUMO

MicroRNAs (miRNAs) are highly conserved small non-coding RNA molecules that post-transcriptionally regulate gene expression in multicellular organisms. Within the set of muscle-specific miRNAs, miR-206 expression is largely restricted to skeletal muscle and is found exclusively within the bony fish lineage. Although many studies have implicated miR-206 in muscle maintenance and disease, its role in skeletal muscle development remains largely unknown. Here, we examine the role of miR-206 during Xenopus laevis somitogenesis. In Xenopus laevis, miR-206 expression coincides with the onset of somitogenesis. We show that both knockdown and over-expression of miR-206 result in abnormal somite formation affecting muscle cell rotation, attachment, and elongation. In particular, our data suggests that miR-206 regulates changes in cell adhesion that affect the ability of newly formed somites to adhere to the notochord as well as to the intersomitic boundaries. Additionally, we show that ß-dystroglycan and F-actin expression levels are significantly reduced, suggesting that knockdown of miR-206 levels affects cellular mechanics necessary for cell shape changes and attachments that are required for proper muscle formation.


Assuntos
Adesão Celular/genética , MicroRNAs/metabolismo , Somitos/metabolismo , Actinas/genética , Animais , Forma Celular/genética , Distroglicanas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/genética , Morfogênese/genética , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Músculos/metabolismo , Notocorda/metabolismo , Homologia de Sequência do Ácido Nucleico , Somitos/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
3.
Mol Biol Evol ; 35(5): 1047-1062, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373712

RESUMO

Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research.


Assuntos
Larva/citologia , Larva/metabolismo , Poliquetos/citologia , Poliquetos/metabolismo , Transcriptoma , Animais , Evolução Biológica , Poliquetos/crescimento & desenvolvimento , Análise de Sequência de RNA , Análise de Célula Única
4.
Methods Mol Biol ; 1649: 111-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29130193

RESUMO

The method described here aims at the construction of a single-cell resolution gene expression atlas for an animal or tissue, combining in situ hybridization (ISH) and single-cell mRNA-sequencing (scRNAseq).A high resolution and medium-coverage gene expression atlas of an animal or tissue of interest can be obtained by performing a series of ISH experiments, followed by a process of image registration and gene expression averaging. Using the overlapping fraction of the genes, concomitantly obtained scRNAseq data can be fitted into the spatial context of the gene expression atlas, complementing the coverage by genes.


Assuntos
Regulação da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Larva/citologia , Larva/genética , Software
5.
Proc Natl Acad Sci U S A ; 114(23): 5878-5885, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584082

RESUMO

The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.


Assuntos
Evolução Biológica , Poliquetos/genética , Algoritmos , Animais , Padronização Corporal/genética , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Neurônios/citologia , Poliquetos/citologia
6.
Dev Dyn ; 243(4): 509-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24357195

RESUMO

BACKGROUND: Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis, and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway et al., 2007). Given the known similarities and differences between zebrafish and Xenopus laevis somitogenesis, we sought to determine whether the role of sdf-1α is conserved in Xenopus laevis. RESULTS: Using a morpholino approach, we demonstrate that knockdown of sdf-1α or its receptor, cxcr4, leads to a significant disruption in somite rotation and myotome alignment. We further show that depletion of sdf-1α or cxcr4 leads to the near absence of ß-dystroglycan and laminin expression at the intersomitic boundaries. Finally, knockdown of sdf-1α decreases the level of activated RhoA, a small GTPase known to regulate cell shape and movement. CONCLUSION: Our results show that sdf-1α signaling regulates somite cell migration, rotation, and myotome alignment by directly or indirectly regulating dystroglycan expression and RhoA activation. These findings support the conservation of sdf-1α signaling in vertebrate somite morphogenesis; however, the precise mechanism by which this signaling pathway influences somite morphogenesis is different between the fish and the frog.


Assuntos
Quimiocina CXCL12/metabolismo , Embrião não Mamífero/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Somitos/embriologia , Proteínas de Xenopus/metabolismo , Animais , Quimiocina CXCL12/genética , Morfogênese/efeitos dos fármacos , Morfolinos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...